盘点BAT在智慧医疗领域的人工智能技术

2017-09-01

回顾近期智慧医疗领域的新闻,7月初,阿里携手万里云正式发布“Doctor You”AI系统,主攻方向是医学影像诊断领域。随后百度宣布开放运算平台。8月初,腾讯发布人工智能医学影像产品——“觅影”用于早期癌症诊断。BAT先后进场让国内医疗人工智能热闹非凡,但业内普遍认为中外在这一领域的技术鸿沟还很长很深。


在过去的半年里,百度、阿里、谷歌(微博)、微软、苹果等科技巨头均不遗余力地布局医疗人工智能,特征是注重技术、巨资先行、频繁收购、攻克领域遍布产业链各环节。


据了解,人工智能在医疗领域的应用主要包括:辅助诊疗、医学影像、药物挖掘、健康管理、急救室和医院管理、可穿戴设备、营养管理、虚拟助手等。其产业链主要包括基础层、技术层、应用层,每个层面的进入门槛、核心优势都不一样,参与者、投资机会和回报也不尽相同。


基础层主要由几家科技巨头布局,包括IBM、谷歌、微软、亚马逊、阿里、百度等。巨头们一般选择计算量需求较大的领域切入,这类企业基本属于高投入、高回报。


技术层是人工智能大生态系统的基础设施,需要有一定规模的工程团队,与行业结合,形成解决方案或通用技术平台。或者算法、框架及工具较多,形成算法工具平台、开发者生态平台,这类企业适合中长期投资布局。


应用层则是在应用场景变现的渠道,据不完全统计,目前全球共有90多家医疗人工智能创业公司分布在应用层、技术层。应用类型包括医疗行业解决方案、医疗行业应用平台,竞争更加激烈,商业变现也来得更快。


作为智慧医疗方案提供商朗锐慧康(www.lrioh.com)认为在智能医疗领域医疗大数据往往是吐槽的重点,吐槽的内容不外乎数据获取难和贵、数据质量差。


医疗数据对于人工智能而言等同于维系生存和成长的主食,有了数据才能训练人工智能机器,应用转化也需要跟临床数据相对接。对于国内企业而言,获取数据的渠道主要是跟公立三甲医院合作。中国医院都有私有云,各个私有云都是独立的,数据不共享。现在有一部分数据被互联网挂号平台占据,但数量少,数据质量达不到医疗研发级别。也有企业帮医院做系统对接然后抓取数据,一般是有选择性的抓取,无法获得完整版的数据资源。医院与医院的数据没有实现互联互通就成了主要的绊脚石。相比之下,欧美国家拥有完整的医疗数据电子化流程,但最终的结果是数据入口被巨头占据,购买数据的成本不低。


现阶段应用层面的医疗人工智能企业商业模式创新已经遭遇瓶颈期,基本依靠筛查服务、分析报告来变现,后期的技术升级、数据积累是否能够带来一些质变还需要验证。